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LDRD Goals

 Develop LBNL capability to build microlens fiber integral
field units (IFUs)

* Research solutions for building a fiber IFU suited for
supernova cosmology

... or in hardware language ...

|dentify microlens array, fiber technology, and mitigations
that deliver a low-étendue beam with high and stable

throughput



Goal 1 Motivation: Fiber IFUs
In High Demand in Astronomy

Legacy Andalusian Transient IFU Network Observatory (LATINO)

We propose the construction of a new integral field spectrograph for the the CAHA 2.2m telescope,

and describe a survey project to be carried out during the next tew years. The nstruinent, the Legacy

Andalusian Transient IFU Network Observatory (LATINO), would provide intermediate spectra resolu-

. tion (R~1000) in the optical wavelength range (3500-10000A) within a field-of-view of 12” x12”, and a
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Goal 2 Motivation: Design a System Specific for
Observing SN la to Probe Dark Energy, Gravity
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The Problem: Science Case

What distinguishes our
science case from
other IFU use cases?

We care about the structured
background (host galaxy) AND
the point source (supernova)

SN2005cs

We require fine spatial resolution



Conservation of Etendue

Whatever optical gymnastics you do, photons satisfy Hamiltonian mechanics
(Liouville’s Theorem)

Etendue = Surface Area x Beam Solid Angle

Telescope diameter X angular resolution element
... EQUALS ...

Fiber core diameter / Focal Ratio

Telescope collects light
of a solid angle of sky

Exit pupil
on its mirror surface PUp

1/F

Fiber collects
light of an
incoming beam

\'»:j:icnl with focal ratio F
10¢r




Problem & Solutions: Small Etendue
versus Transmission and Stability

A small telescope and high angular resolution means small étendue
Has pesky implications for fibers

: : «——— Small cores have poor transmission
Fiber Core Diameter P

Etendue =

Focal Ratio <+<—— Large F degrades optical stability

In astronomy the standard is NA=0.22 fibers fed by F~4 beams
Exit pupil

[Numerical aperture (NA) is the quadratic difference between core and
clad indices of refraction]

1/F
For a 2.5m telescope, 0.5” sky resolution, F=4 calls for 21 pm fiber core,

which has small light collection surface area, poor transmission

Fiber collects SOLUTIONS

light of an
incoming beam e Use fibers with better transmission for small core size

otp:icnl with focal ratio F
10¢r

e Test and mitigate fiber stability for large focal ratios



Solution: Thin Cores and Slow
Input Beams with High NA Fibers
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Characterize and Mitigate Fiber
and Microlens Performance

* For small-core high-NA
fibers: measure
throughput

* For different input focal
ratios and fibers:
Measure and mitigate
stability

* For microlens arrays:
measure energy
distribution (PSF)

Build on infrastructure
and expertise
developed for DESI

Test rig at SSL
used for DESI
used to measure
fiber transmission
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The Solution: Mitigate Fiber
Stability

 DESI mitigated stability issue with appropriate choice of fiber
ositioner technolog

DESI tests demonstrated that
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Conclusions

 Research and develop capabilities for Fiber IFUs in demand by
the astronomical community AND for supernova cosmology

 There are as-of-yet uncharacterized fibers that look well-suited for
SN requirements

e | everage existing fiber expertise and facilities that contributed to
the success of DESI



Backups



Example IFS: SNfactory’s

SNIFS at UH-88

A single exposure produces spectrophotometry

Efficient for observing SN time series
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Pros of Fiber IFS

Ll | e Single technology applies to many telescopes - cost savings

e .-. and design flexibility
+ Fibres .‘ .
R

IFU

 |FU geometry customized for each focal plane
e Spectrograph

* Optics not tailored to telescope, single design applied to
decoupled many telescopes

 Put anywhere, not necessarily mounted on telescope

Science calls for a network of telescopes / IFS

Spectrograph

e

res




Possible Sources of
Subsequent Funding

e $450,000, Calar Alto Observatory (through a grant from
the European Regional Development Fund)

e« FOBOS $900,000 for fibers in NSF MIPS, more if built

e TAO Telescope >= $450,000, Tokyo Atacama Observatory



Communication with Fiber
Vendor

Hi Claire,
Certainly — I would be happy to expand on this. Below are all of our NA options above the standard NA 0.22:

e Qlass core/glass clad (FIP, FVP, FBP, etc.): NA 0.28
© Made by increasing the fluorine concentration in the dopant.
e Qlass core/glass clad (FIP, FVP, FBP, etc): NA 0.34
o Made by reverse doping the core with germanium
o Attenuation may be affected slightly be presence of germanium
e Qlass core/hard polymer clad (JTFLH): NA 0.37 or NA 0.48
o Same glass core in both cases, NA difference is due to different plastic cladding.
o Also available as JTFVH (high -OH) on a custom basis.

o http://www.literature.molex.com/SQLImages/kelmscott/Molex/PDF Images/987650-8939.PDF
e Qlass core/Teflon AF clad (FSU): NA 0.66

o http://www.literature.molex.com/SQLImages/kelmscott/Molex/PDF Images/987650-8935.PDF

To provide further details on the glass core/Teflon clad:

This is the only option for a glass core fiber that will go anywhere above NA 0.48. Plastic core/borosilicate core could match this NA.

We could manufacture a 30um core size — the smallest we have ever gone on this fiber type is 25um.

It is manufactured on a custom basis only, so we don’t have anything close in-stock that I could send as a sample unfortunately.

We typically would want to put a layer of acrylate on top of the Teflon AF cladding for extra protection, however some people prefer to have the
fiber without the extra layer of buffer.

e It is normally supplied for medical applications (ophthalmology), and illumination applications. To my knowledge, we have not provided this to
the astronomy community.



