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Motivation

Sample Selection An Important Ingredient for Cosmology Analysis

* Incomplete sample selection must be considered in SN la cosmology analysis

* Canonical example is a magnitude-limited sample, which can lead to Malmquist bias in distances estimated
from standard candles with an intrinsic magnitude dispersion
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« DESC planned sample selection is more complicated than just a magnitude limit
» Detection based on multiple color/phase measurements

* Typing based on machine-learned photometric SN la classification



Motivation

Alert Brokers a Component of DESC Transient Pipelines
* Third-party brokers provide customized subsets of near real-time LSST-
discovered alerts/objects

« DESC plans to use brokers to identify targets for real-time spectroscopic
follow-up and likely Type la supernovae to include in the cosmology analysis

 Brokers would then Iin part determine sample selection

* To evaluate brokers for use in our transient pipelines DESC needs to determine
the computational requirements for calculating the “sample selection”

o After saying this for 1+ year, | was asked by Rahul for quantitative
requirements



Approach

e Selection function is not analytic or depends on many measurements

* Quantities needed for cosmology analysis that depend on the selection function are calculated using Monte
Carlo

* Uncertainties in these quantities depend on the number of Monte Carlo samples

 Each Monte Carlo sample is processed through the transient pipeline (broker) to get its selection
probability

* Uncertainties propagate into errors in the
* Position of the maximum likelihood, i.e. parameter estimators
 Hessian at maximum likelihood (proxy for parameter uncertainty)

* Requirements on the precisions of parameters and their uncertainties translate into a minimum number of
simulated MC samples to process through the transient pipeline (broker)



Model and Data

lllustrative Toy Example

* Article presents an illustrative toy example to present the procedure;

requirements are dependent on model and selection, which will not be
specified for a few years

 Model
* Perfect standard candle with intrinsic magnitude dispersion

 Second background population with a different mean magnitude, broad
iIntrinsic magnitude dispersion

 Model parameters: distance modulus at the redshift; intrinsic fraction of the
candle relative to background population; true type of each object



Model and Selection Function

lllustrative Toy Example

 Data
N candles at a fixed redshift that pass sample selection
 Measured magnitude for each candle (independent)

o Sample Selection — Two criteria
 Magnitude-limit cutoff (S=1)

o Standard candles selection with false-positives, false negatives (t=1)



Model and Data
Likelihood

Fraction of model objects selected and
classified as a candle

Probability of a model object being
selected and classified as candle and
having some magnitude

Likelihood can be expressed as
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Model and Data

Maximum Likelihood and Hessian
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» Depend on partial derivatives of S and R with respect to model parameters
o Give familiar results when S is parameter-independent



S and Its Partials

Where Numerical Errors Enter

S involves an integral/sum
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which is estimated using Monte Carlo integration
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Similar expressions for the partial derivatives of S



Numerical Errors in S and Its

Partial Derivatives
lllustrative example case using 10,000 MC Samples

 Calculate S as a function of y for one MC realization

* Repeat for many MC realizations

Calculate mean and dispersion or those many realizations
* Plotted are

* Mean and dispersion as points

e Several realizations as lines
* Jo note

* For one MC realization the errors at different p are
correlated

* Increasing/decreasing the number of MC samples
decrease/increase the dispersion

 Details of model used in this calculation in article
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Best-Fit Estimators
Finding the Zero
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e Each line is the one MC calculation of the function whose zero is the coordinate of maximum likelihood

 Spread in zeros represent estimator errors
« Spread larger for brighter limiting magnitude
e Spread is to first order independent of the number of candles and the data that enter the analysis



Errors In Best-Fit Estimators Due
to MC Integration

lllustrative example case using 10,000 MC Samples

* Distribution of best-fit estimators
for many MC realizations of S

 Errors in the distance modulus

and population fraction are N
correlated




Dependence of Errors on the
Number of MC Samples

Requirements on Determining the Sample Selection
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* Errors in the distance modulus estimator, DR —rE

fractional error in the estimator 5 | -

uncertainty (Hessian) as a function of the
number of MC Samples

* Dependent on the magnitude limit

* The more complete the sample the
fewer Monte Carlo samples needed to
achieve the same errors

s.d.(0,)/0,

e Scales as N-1/2

» Desired precision translates into a
computational requirement




Scaling to Other Models

 Models whose sources have broad magnitude distributions require more MC
samples

 Monte Carlo integration variance goes as the variance of the sampling
distribution

» Need only be concerned about sources that can change 3S/38
* |Integrand also matters
 Models with low selection fraction require more integration precision

e S enters equations as S-19S/90



Further Work

Gaps to Fill for a Real SN la Analysis

 SNe la are standardizable candles with  Real sample selection will be date-
intrinsic subparameters dependent

« Classifiers that use magnitude  Sample selection may be stochastic, i.e.
information should cause bias 0<S<1

 Combining spectroscopically confirmed * Redshift-dependent rates in the model
and unconfirmed SNe la in one sample add a level of complexity in the likelihood

with different sample selections . . =
P * Calculate partial derivatives of S for

- Examples in the article model intrinsic existing classitiers

magnitude distributions as normally

distributed * Wo—WaInstead of



Conclusions

* For the range of toy models explored in the article and reasonable error
targets, <~106 MC samples are required

* This is the number of real alerts a broker processes in one night
* No alarm bells yet for being able to process simulated data
 Cosmology analysis can occur 10+ years after sample selection

 Concluding Requirement: Containerize the pipeline state for future analysis on
DESC computers



